Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Life Sci ; 323: 121648, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001807

RESUMO

AIMS: Vascular dysfunction and elevated circulating dipeptidyl peptidase 4 (DPP4) activity are both reported to be involved in the progression of heart failure (HF). While the cardiac benefits of DPP4 inhibitors (DPP4i) have been extensively studied, little is known about the effects of DPP4i on vascular dysfunction in nondiabetic HF. This study tested the hypothesis that vildagliptin (DPP4i) mitigates aortic hyperreactivity in male HF rats. MATERIALS AND METHODS: Male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation to HF induction or sham operation (SO). Six weeks after surgery, radiofrequency-ablated rats who developed HF were treated with vildagliptin (120 mg⸱kg-1⸱day-1) or vehicle for 4 weeks. Thoracic aorta reactivity, dihydroethidium fluorescence, immunoblotting experiments, and enzyme-linked immunosorbent assays were performed. KEY FINDINGS: DPP4i ameliorated the hypercontractility of HF aortas to the α-adrenoceptor agonist phenylephrine towards SO levels. In HF, the reduced endothelium and nitric oxide (NO) anticontractile effect on phenylephrine response was restored by DPP4i. At the molecular level, this vasoprotective effect of DPP4i was accompanied by (i) reduced oxidative stress and NADPH oxidase 2 (Nox2) expression, (ii) enhanced total endothelial nitric oxide synthase (eNOS) expression and phosphorylation at Ser1177, and (iii) increased PKA activation, which acts upstream of eNOS. Additionally, DPP4i restored the higher serum angiotensin II concentration towards SO. SIGNIFICANCE: Our data demonstrate that DPP4i ameliorates aortic hypercontractility, most likely by enhancing NO bioavailability, showing that the DPP4i-induced cardioprotection in male HF may arise from effects not only in the heart but also in conductance arteries.


Assuntos
Insuficiência Cardíaca , Óxido Nítrico Sintase Tipo III , Animais , Masculino , Ratos , Aorta/metabolismo , Dipeptidil Peptidase 4/metabolismo , Endotélio Vascular/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Fenilefrina , Ratos Wistar , Vildagliptina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
2.
Life Sci ; 316: 121416, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690245

RESUMO

AIMS: Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown. AIM: To investigate the role of miRNA-22 on vascular reactivity and its impact on obesity-induced PVAT dysfunction. MAIN METHODS: Wild-type and miRNA-22 knockout (KO) mice were fed a control or a high-fat (HF) diet. To characterize the vascular response, concentration-responses curves to noradrenaline were performed in PVAT- or PVAT+ thoracic aortic rings in absence and presence of L-NAME. Expression of adipogenic and thermogenic markers and NOS isoforms were evaluated by western blotting or qPCR. KEY FINDINGS: HF diet and miRNA-22 deletion reduced noradrenaline-induced contraction in PVAT- aortic rings. Additionally, miRNA-22 deletion increased noradrenaline-induced contraction in PVAT+ aortic rings without affecting its sensitivity; however, this effect was not observed in miRNA-22 KO mice fed a HF diet. Interestingly, miRNA-22 deletion reduced the contraction of aortic rings to noradrenaline via a NOS-dependent mechanism. Moreover, HF diet abolished the NOS-mediated anticontractile effect of PVAT, which was attenuated by miRNA-22 deletion. Mechanistically, we found that PVAT from miRNA-22 KO mice fed a HF diet presented increased protein expression of nNOS. SIGNIFICANCE: These results suggest that miRNA-22 is important for aorta reactivity under physiological circumstances and its deletion attenuates the loss of the NOS-mediated anticontractile effect of PVAT in obesity.


Assuntos
Tecido Adiposo , Aorta , MicroRNAs , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Aorta/metabolismo , MicroRNAs/metabolismo , Norepinefrina/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Vasoconstrição
3.
Life Sci ; 306: 120851, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926590

RESUMO

AIMS: The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS: Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS: II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1ß and IL-6 in lung explants following II/R. SIGNIFICANCE: The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.


Assuntos
Enteropatias , Isquemia Mesentérica , Traumatismo por Reperfusão , Animais , Enteropatias/tratamento farmacológico , Enteropatias/prevenção & controle , Isquemia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sinvastatina/farmacologia
5.
Life Sci ; 285: 119939, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34506836

RESUMO

AIMS: Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that ß-adrenergic (ß-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular ß-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following ß-AR overstimulation. MAIN METHODS: Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the ß-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS: Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE: The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following ß-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.


Assuntos
Caveolina 1/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Receptores Adrenérgicos alfa/metabolismo , Vasodilatação/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Caveolina 1/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Peróxido de Hidrogênio/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
6.
Am J Physiol Heart Circ Physiol ; 320(2): H563-H574, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164582

RESUMO

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats. HF was induced by coronary artery occlusion in male Wistar rats, and sham-operated (SO) rats were used as controls. After 12 wk, a greater vasoconstrictor response to electrical field stimulation (EFS) was observed in endothelium-intact and endothelium-denuded SMA of HF rats. Alpha-adrenoceptor antagonist phentolamine diminished this response in a higher magnitude in HF than in SO animals. However, the noradrenaline (NA) reuptake inhibitor desipramine increased EFS-induced vasoconstriction more in segments from HF rats. Besides, EFS-induced NA release was greater in HF animals, due to a higher tyrosine hydroxylase expression and activity. P2 purinoceptor antagonist suramin reduced EFS-induced vasoconstriction only in segments from SO rats, and adenosine 5'-triphosphate (ATP) release was lower in HF than in SO. Moreover, nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) enhanced EFS-induced vasoconstriction in a similar extent in both groups. HF was not associated with changes in EFS-induced NO release or the vasodilator response to NO donor sodium nitroprusside. In conclusion, HF postmyocardial infarction enhanced noradrenergic function and diminished purinergic cotransmission in SMA and did not change nitrergic innervation. The net effect was an increased sympathetic participation on the EFS-induced vasoconstriction that could help to understand the neurotransduction involved on the control of vascular tonus in HF.NEW & NOTEWORTHY This study reinforces the pivotal role of noradrenergic innervation in the regulation of mesenteric vascular tone in a rat model of heart failure. Moreover, our results highlight the counteracting role of ATP and NA reuptake, and help to understand the signaling pathways involved on the control of vascular tonus and resistance in heart failure postmyocardial infarction.


Assuntos
Trifosfato de Adenosina/metabolismo , Insuficiência Cardíaca/metabolismo , Norepinefrina/metabolismo , Transmissão Sináptica , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Desipramina/farmacologia , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fentolamina/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Suramina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição
7.
Am J Physiol Heart Circ Physiol ; 317(1): H87-H96, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050559

RESUMO

Impairment of the myogenic response can affect capillary hydrostatic pressure and contribute to peripheral edema and exercise intolerance, which are markers of heart failure (HF). The aim of this study was to assess the effects of exercise training (ET) on myogenic response in skeletal muscle resistance arteries and peripheral edema in HF rats, focusing on the potential signaling pathways involved in these adjustments. Male Wistar rats were submitted to either coronary artery occlusion or a sham-operated surgery. After 4 wk, an exercise test was performed, and the rats were divided into the following groups: untrained normal control (UNC) and untrained HF (UHF) and exercise- trained (on treadmill, 50-60% of maximal capacity) NC (TNC) and exercise-trained HF (THF). Caudal tibial artery (CTA) myogenic response was impaired in UHF compared with UNC, and ET restored this response in THF to NC levels and increased it in TNC. Rho kinase (ROCK) inhibitor abolished CTA myogenic response in the untrained and blunted it in exercise-trained groups. CTA-stored calcium (Ca2+) mobilization was higher in exercise-trained rats compared with untrained rats. The paw volume was higher in UHF rats, and ET decreased this response compared with UNC. Myogenic constriction was positively correlated with maximal running distance and negatively correlated with paw volume. The results demonstrate, for the first time, that HF impairs the myogenic response in skeletal muscle arteries, which contributes to peripheral edema in this syndrome. ET restores the myogenic response in skeletal muscle arteries improving Ca2+ sensitization and handling. Additionally, this paradigm also improves peripheral edema and exercise intolerance. NEW & NOTEWORTHY The novel and main finding of the present study is that moderate intensity exercise training restores the impaired myogenic response of skeletal muscle resistance arteries, exercise intolerance and peripheral edema in rats with heart failure. These results also show for the first time to our knowledge that exercise training improving calcium sensitization through the ROCK pathway and enhancing intracellular calcium handling could contribute to restoration of flow autoregulation to skeletal muscle in heart failure.


Assuntos
Edema/terapia , Terapia por Exercício , Tolerância ao Exercício , Insuficiência Cardíaca/terapia , Músculo Esquelético/irrigação sanguínea , Condicionamento Físico Animal , Artérias da Tíbia/fisiopatologia , Resistência Vascular , Vasoconstrição , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Edema/metabolismo , Edema/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Ratos Wistar , Recuperação de Função Fisiológica , Corrida , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Artérias da Tíbia/metabolismo , Quinases Associadas a rho/metabolismo
8.
Int J Cardiol Heart Vasc ; 21: 22-28, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30258978

RESUMO

BACKGROUND: Atrial fibrillation (AF) frequently coexists with congestive heart failure (CHF). The increased susceptibility to AF in CHF has been attributed to a variety of structural and electrophysiological changes in the atria, particularly dilation and interstitial fibrosis. We evaluated atrial remodeling and AF vulnerability in a rat model of CHF induced by left ventricle (LV) radiofrequency (RF) ablation. METHODS: Wistar rats were divided into 3 groups: RF-induced CHF (Ab, n = 36), CHF animals treated with spironolactone (AbSpi, n = 20) and sham controls (Sham, n = 29). After 12 weeks, animals underwent echocardiographic and electrophysiological evaluation and were sacrificed for histological (atrial fibrosis) and Western blotting (TGF-ß1, collagen I/III, connexin 43 and CaV1.2) analysis. RESULTS: Mild LV dysfunction and marked atrial enlargement were noted in both ablated groups. AF inducibility (episodes ≥2 s) increased in the Ab group compared to sham animals (31/36, 86%; vs. 15/29, 52%; p = 0.005), but did not differ from the AbSpi group (16/20, 80%; p = NS). Sustained AF (>30 s) was also more frequent in the Ab group compared to shams (56% vs. 28%; p = 0.04). Spironolactone reduced atrial fibrosis (p < 0.01) as well as TGF-ß1 (p < 0.01) and collagen I/III (p < 0.01) expression but did not affect connexin 43 and CaV1.2 expression. CONCLUSIONS: Rats with RF-induced CHF exhibit pronounced atrial structural remodeling and enhanced AF vulnerability. This model may be useful for studying AF substrate in CHF.

9.
Am J Physiol Heart Circ Physiol ; 314(4): H878-H887, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351461

RESUMO

Exercise training (ET) has emerged as a nonpharmacological therapy for cardiovascular diseases because of its helpful milieu for improving vascular function. The aim of the present study was to assess whether ET reverses the alterations in vascular reactivity observed in heart failure (HF)-related coronary arteries and to elucidate the molecular mechanisms involved in these adjustments. Male Wistar rats were subjected to either coronary artery ligation or sham operation. Four weeks after the surgery, rats were divided into two groups: untrained HF (UHF) and exercise-trained HF (THF). ET was conducted on a treadmill for 8 wk. An untrained SO group was included in the study as a normal control. ET restored the impaired acetylcholine (ACh)- and sodium nitroprusside-induced relaxation in coronary arteries to levels of the control. Oxidative stress and reduced nitric oxide (NO) production were observed in UHF, whereas ET restored both parameters to the levels of the control. Expression levels of endothelial NO synthase (eNOS) and soluble guanylyl cyclase subunits were increased in coronary arteries of UHF rats but reduced in THF rats. Tetrahydrobiopterin restored ACh-induced NO production in the UHF group, indicating that eNOS was uncoupled. ET increased the eNOS dimer-to-monomer ratio and expression of GTP cyclohydrolase 1, thus increasing NO bioavailability. Taken together, these findings demonstrate that ET reverses the dysfunction of the NO/soluble guanylyl cyclase pathway present in coronary arteries of HF rats. These effects of ET are associated with increased GTP cyclohydrolase 1 expression, restoration of NO bioavailability, and reduced oxidative stress through eNOS coupling. NEW & NOTEWORTHY The present study provides a molecular basis for the exercise-induced improvement in coronary arteries function in heart failure. Increasing the expression of GTP cyclohydrolase 1, the rate-limiting enzyme in the de novo biosynthesis of tetrahydrobiopterin, exercise training couples endothelial nitric oxide synthase, reduces oxidative stress, and increases nitric oxide bioavailability and sensitivity in coronary arteries of heart failure rats.


Assuntos
Vasos Coronários/enzimologia , Terapia por Exercício , Insuficiência Cardíaca/terapia , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Animais , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Tolerância ao Exercício , GTP Cicloidrolase/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo
10.
Front Physiol ; 7: 295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462277

RESUMO

Divergent phenotypes between the perivascular adipose tissue (PVAT) surrounding the abdominal and the thoracic aorta might be implicated in regional aortic differences, such as susceptibility to atherosclerosis. Although PVAT of the thoracic aorta exhibits anti-contractile function, the role of PVAT in the regulation of the vascular tone of the abdominal aorta is not well defined. In the present study, we compared the anti-contractile function, nitric oxide (NO) availability, and reactive oxygen species (ROS) formation in PVAT and vessel walls of abdominal and thoracic aorta. Abdominal and thoracic aortic tissue from male Wistar rats were used to perform functional and molecular experiments. PVAT reduced the contraction evoked by phenylephrine in the absence and presence of endothelium in the thoracic aorta, whereas this anti-contractile effect was not observed in the abdominal aorta. Abdominal PVAT exhibited a reduction in endothelial NO synthase (eNOS) expression compared with thoracic PVAT, without differences in eNOS expression in the vessel walls. In agreement with this result, NO production evaluated in situ using 4,5-diaminofluorescein was less pronounced in abdominal compared with thoracic aortic PVAT, whereas no significant difference was observed for endothelial NO production. Moreover, NOS inhibition with L-NAME enhanced the phenylephrine-induced contraction in endothelial-denuded rings with PVAT from thoracic but not abdominal aorta. ROS formation and lipid peroxidation products evaluated through the quantification of hydroethidine fluorescence and 4-hydroxynonenal adducts, respectively, were similar between PVAT and vessel walls from the abdominal and thoracic aorta. Extracellular superoxide dismutase (SOD) expression was similar between the vessel walls and PVAT of the abdominal and thoracic aorta. However, Mn-SOD levels were reduced, while CuZn-SOD levels were increased in abdominal PVAT compared with thoracic aortic PVAT. In conclusion, our results demonstrate that the anti-contractile function of PVAT is lost in the abdominal portion of the aorta through a reduction in eNOS-derived NO production compared with the thoracic aorta. Although relative SOD isoforms are different along the aorta, ROS formation, and lipid peroxidation seem to be similar. These findings highlight the specific regional roles of PVAT depots in the control of vascular function that can drive differences in susceptibility to vascular injury.

11.
Hypertension ; 68(3): 726-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432866

RESUMO

Sustained stimulation of ß-adrenoceptors (ß-ARs) and activation of renin-angiotensin-aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by ß-AR overstimulation. ß-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase-derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue-derived corticosterone in association with increased expression of 11ß-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by ß-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by ß-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation.


Assuntos
Cardiomegalia/tratamento farmacológico , Losartan/administração & dosagem , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores de Mineralocorticoides/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Espironolactona/administração & dosagem , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Cardiomegalia/induzido quimicamente , Modelos Animais de Doenças , Isoproterenol/farmacologia , Masculino , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/efeitos dos fármacos , Papel (figurativo) , Vasoconstrição/efeitos dos fármacos
12.
Hypertension ; 66(4): 767-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238446

RESUMO

Hypertensive cardiac remodeling is accompanied by molecular inflammation and fibrosis, 2 mechanisms that finally affect cardiac function. At cardiac level, aldosterone promotes inflammation and fibrosis, although the precise mechanisms are still unclear. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, is associated with inflammation and fibrosis in the cardiovascular system. We herein investigated whether Gal-3 inhibition could block aldosterone-induced cardiac inflammation and fibrosis and its potential role in cardiac damage associated with hypertension. Aldosterone-salt-treated rats presented hypertension, cardiac inflammation, and fibrosis that were prevented by the pharmacological inhibition of Gal-3 with modified citrus pectin. Cardiac inflammation and fibrosis presented in spontaneously hypertensive rats were prevented by modified citrus pectin treatment, whereas Gal-3 blockade did not modify blood pressure levels. In the absence of blood pressure modifications, Gal-3 knockout mice were resistant to aldosterone-induced cardiac inflammation. In human cardiac fibroblasts, aldosterone increased Gal-3 expression via its mineralocorticoid receptor. Gal-3 and aldosterone enhanced proinflammatory and profibrotic markers, as well as metalloproteinase activities in human cardiac fibroblasts, effects that were not observed in Gal-3-silenced cells treated with aldosterone. In experimental hyperaldosteronism, the increase in Gal-3 expression was associated with cardiac inflammation and fibrosis, alterations that were prevented by Gal-3 blockade independently of blood pressure levels. These data suggest that Gal-3 could be a new molecular mechanism linking cardiac inflammation and fibrosis in situations with high-aldosterone levels, such as hypertension.


Assuntos
Galectina 3/antagonistas & inibidores , Hiperaldosteronismo/complicações , Hipertensão/complicações , Miocardite/prevenção & controle , Espironolactona/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose/etiologia , Fibrose/patologia , Galectina 3/biossíntese , Humanos , Hiperaldosteronismo/tratamento farmacológico , Hiperaldosteronismo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Miocardite/etiologia , Miocardite/patologia , Ratos , Ratos Endogâmicos WKY , Ratos Wistar
13.
J Mol Cell Cardiol ; 86: 110-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26225841

RESUMO

AIM: The endothelium, mainly via nitric oxide (NO) release, adjusts the coronary flow. Cardiac function is closely linked to blood flow; thus, we tested the hypothesis that NO modulation in coronary arteries could be differentially adjusted after myocardial infarction (MI) in the presence or absence of heart failure (HF). METHODS AND RESULTS: Four weeks after coronary occlusion, the infarcted rats were subdivided into rats without (MI) or with HF signs according to haemodynamic parameters. The septal coronary arteries were subsequently used to perform functional and molecular experiments. Acetylcholine (ACh)-induced relaxation was decreased in the coronary arteries following HF, whereas it was enhanced in the arteries of the MI compared with those of SHAM-operated (SO) rats. The relaxation induced by the NO donor was similar among the groups. NO production, which was evaluated by 4,5-diaminofluorescein diacetate, was reduced in the coronary arteries of the HF group and increased in the arteries with MI after ACh-induced stimulation. HF coronary arteries exhibited oxidative stress, which was evaluated via ethidium bromide-positive nuclei, whereas it was decreased in MI. To evaluate the mechanisms involved in the enhanced ACh-induced relaxation in the arteries following MI, certain septal coronary arteries were pre-incubated with L-NAME (a nonselective NO synthase (NOS) inhibitor), 7-NI (a selective neuronal NOS (nNOS) inhibitor) or LY294002 (a PI3-kinase inhibitor). L-NAME and LY294002 reduced ACh-induced relaxation in the MI and SO rats; however, these effects were greater in the MI arteries. 7-NI reduced only the ACh-relaxation in MI. In addition, the eNOS, nNOS, Akt, and superoxide dismutase isoform protein expressions were greater in the coronary arteries of the MI than in those of the SO groups. CONCLUSION: Our data suggested that endothelial function was closely related to cardiac function after coronary occlusion. The coronary arteries from the HF rats exhibited reduced NO bioavailability, whereas the MI rats exhibited increased NO bioavailability because of increased eNOS/nNOS/PI3-kinase/Akt pathway and a reduction in ROS generation. These results suggest that enhanced NO modulation can prevent the onset of HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Vasodilatação/efeitos dos fármacos , Acetilcolina/administração & dosagem , Animais , Disponibilidade Biológica , Oclusão Coronária , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , NG-Nitroarginina Metil Éster/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ratos , Vasodilatadores/administração & dosagem
14.
PLoS One ; 10(4): e0125388, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923465

RESUMO

OBJECTIVE: Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS). METHODS: Female Wistar rats ovariectomized (OVX - n=20) or with intact ovary (SHAM - n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA). In the thoracic aorta the endothelium-dependent and -independent vasodilation was assessed by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. Certain aortic rings were incubated with L-NAME to assess the NO modulation on the ACh-induced vasodilation. The fluorescence to dihydroethidium in aortic slices and plasma nitrite/nitrate concentrations were measured to evaluate ROS and NO bioavailability, respectively. RESULTS: ACh-induced vasodilation was reduced in OVX rats as compared SHAM (Rmax: SHAM: 86±3.3 vs. OVX: 57±3.0%, p<0.01). Training prevented this response in OVX-TRA (Rmax: OVX-TRA: 88±2.0%, p<0.01), while did not change it in SHAM-TRA (Rmax: SHAM-TRA: 80±2.2%, p<0.01). The L-NAME incubation abolished the differences in ACh-induced relaxation among groups. SNP-induced vasodilation was not different among groups. OVX reduced nitrite/nitrate plasma concentrations and increased ROS in aortic slices, training as effective to restore these parameters to the SHAM levels. CONCLUSIONS: Exercise training, even in estrogen deficiency conditions, is able to improve endothelial dependent vasodilation in rat aorta via enhanced NO bioavailability and reduced ROS levels.


Assuntos
Endotélio Vascular/metabolismo , Exercício Físico , Menopausa/fisiologia , Óxido Nítrico/metabolismo , Condicionamento Físico Animal , Animais , Disponibilidade Biológica , Endotélio Vascular/patologia , Feminino , Humanos , Menopausa/metabolismo , Ovariectomia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/fisiologia
15.
Front Chem ; 3: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870854

RESUMO

NADPH oxidases derived reactive oxygen species (ROS) play an important role in vascular function and remodeling in hypertension through redox signaling processes. Previous studies demonstrated that protein disulfide isomerase (PDI) regulates Nox1 expression and ROS generation in cultured vascular smooth muscle cells. However, the role of PDI in conductance and resistance arteries during hypertension development remains unknown. The aim of the present study was to investigate PDI expression and NADPH oxidase dependent ROS generation during hypertension development. Mesenteric resistance arteries (MRA) and thoracic aorta were isolated from 6, 8, and 12 week-old spontaneously hypertensive (SHR) and Wistar rats. ROS production (dihydroethidium fluorescence), PDI (WB, imunofluorescence), Nox1 and NOX4 (RT-PCR) expression were evaluated. Results show a progressive increase in ROS generation in MRA and aorta from 8 to 12 week-old SHR. This effect was associated with a concomitant increase in PDI and Nox1 expression only in MRA. Therefore, suggesting a positive correlation between PDI and Nox1 expression during the development of hypertension in MRA. In order to investigate if this effect was due to an increase in arterial blood pressure, pre hypertensive SHR were treated with losartan (20 mg/kg/day for 30 days), an AT1 receptor antagonist. Losartan decreased blood pressure and ROS generation in both vascular beds. However, only in SHR MRA losartan treatment lowered PDI and Nox1 expression to control levels. In MRA PDI inhibition (bacitracin, 0.5 mM) decreased Ang II redox signaling (p-ERK 1/2). Altogether, our results suggest that PDI plays a role in triggering oxidative stress and vascular dysfunction in resistance but not in conductance arteries, increasing Nox1 expression and activity. Therefore, PDI could be a new player in oxidative stress and functional alterations in resistance arteries during the establishment of hypertension.

16.
Br J Pharmacol ; 172(14): 3484-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25832173

RESUMO

BACKGROUND AND PURPOSE: Eugenol, a vanilloid molecule found in some dietary plants, relaxes vasculature in part via an endothelium-dependent process; however, the mechanisms involved are unclear. Here, we investigated the endothelial cell-mediated mechanism by which eugenol modulates rat mesenteric artery contractility and systemic BP. EXPERIMENTAL APPROACH: The isometric tension of rat mesenteric arteries (size 200-300 µm) was measured using wire myography; non-selective cation currents (ICat ) were recorded in endothelial cells using patch clamp electrophysiology. Mean arterial pressure (MAP) and heart rate (HR) were determined in anaesthetized rats. KEY RESULTS: Eugenol relaxed endothelium-intact arteries in a concentration-dependent manner and this effect was attenuated by endothelium denudation. L-NAME, a NOS inhibitor, a combination of TRAM-34 and apamin, selective blockers of intermediate and small conductance Ca(2+) -activated K(+) channels, respectively, and HC-067047, a TRPV4 channel inhibitor, but not indomethacin, a COX inhibitor, reduced eugenol-induced relaxation in endothelium-intact arteries. Eugenol activated HC-067047-sensitive ICat in mesenteric artery endothelial cells. Short interfering RNA (siRNA)-mediated TRPV4 knockdown abolished eugenol-induced ICat activation. An i.v. injection of eugenol caused an immediate, transient reduction in both MAP and HR, which was followed by prolonged, sustained hypotension in anaesthetized rats. This sustained hypotension was blocked by HC-067047. CONCLUSIONS AND IMPLICATIONS: Eugenol activates TRPV4 channels in mesenteric artery endothelial cells, leading to vasorelaxation, and reduces systemic BP in vivo. Eugenol may be therapeutically useful as an antihypertensive agent and is a viable molecular candidate from which to develop second-generation TRPV4 channel activators that reduce BP.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eugenol/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Vasodilatação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Life Sci ; 125: 49-56, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25640757

RESUMO

AIMS: The aim of this study was to investigate whether ß-adrenoceptor (ß-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. MAIN METHODS: Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). KEY FINDINGS: ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. SIGNIFICANCE: The present data indicate that ß-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of ß-AR overactivation on pulmonary circulation.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , GMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Isoproterenol/farmacologia , Óxido Nítrico/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/fisiologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfoproteínas/metabolismo , Artéria Pulmonar/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
18.
Am J Physiol Heart Circ Physiol ; 307(11): H1655-66, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25305179

RESUMO

Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle. 3) The alteration in mechanoreflex control is accompanied by COX-2 pathway in skeletal muscle. Thirty-four consecutive HF patients with ejection fractions <40% were randomized to untrained (n = 17; 54 ± 2 yr) or exercise-trained (n = 17; 56 ± 2 yr) groups. MSNA was recorded by microneurography. Mechanoreceptors were activated by passive exercise and metaboreceptors by postexercise circulatory arrest (PECA). COX-2 pathway, TRPV1, and CB1 receptors were measured in muscle biopsies. Following ET, resting MSNA was decreased compared with untrained group. During PECA (metaboreflex), MSNA responses were increased, which was accompanied by the expression of TRPV1 and CB1 receptors. During passive exercise (mechanoreflex), MSNA responses were decreased, which was accompanied by decreased expression of COX-2, prostaglandin-E2 receptor-4, and thromboxane-A2 receptor and by decreased in muscle inflammation, as indicated by increased miRNA-146 levels and the stable NF-κB/IκB-α ratio. In conclusion, ET alters muscle metaboreflex and mechanoreflex control of MSNA in HF patients. This alteration with ET is accompanied by alteration in TRPV1 and CB1 expression and COX-2 pathway and inflammation in skeletal muscle.


Assuntos
Terapia por Exercício , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Reflexo/fisiologia , Adulto , Idoso , Doença Crônica , Ciclo-Oxigenase 2/fisiologia , Teste de Esforço , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/biossíntese , Transdução de Sinais/fisiologia , Volume Sistólico/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Canais de Cátion TRPV/biossíntese
19.
Exp Physiol ; 99(10): 1427-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037566

RESUMO

Knockout mice lacking both α2A- and α2C-adrenergic receptors (α2A/α2C-ARKO) provide a model for understanding the mechanisms underlying the deleterious effects of sympathetic hyperactivity on the cardiovascular system. Thus, in the present study we investigated the vascular reactivity of large and small arteries of α2A/α2C-ARKO mice. Aorta and mesenteric small arteries (MSAs) from 7-month-old male α2A/α2C-ARKO mice and congenic C57BL6/J mice (wild-type, WT) were studied. In the aorta, noradrenaline- and serotonin-induced contraction was similar between groups, but in MSAs there was an increase in agonist-induced contraction in α2A/α2C-ARKO compared with WT. The l-NAME effect was reduced in MSAs of α2A/α2C-ARKO mice compared with WT mice, as was basal NO evaluated by a 4,5-diaminofluorescein diacetate probe. Increased total endothelial nitric oxide synthase (eNOS) protein expression was observed in MSAs from α2A/α2C-ARKO mice, while the dimer/monomer ratio of eNOS was decreased. Mesenteric small arteries from α2A/α2C-ARKO mice showed an increase in ethidium bromide-positive nuclei, indicating oxidative stress, which was attenuated by incubation with l-NAME. The sympathetic hyperactivity present in α2A/α2C-ARKO mice alters vascular reactivity only in certain types of arteries. Moreover, after chronic sympathetic hyperactivity, uncoupling eNOS may be a significant source of superoxide anion and reduced NO bioavailability in small vessels, increasing the contractile tone.


Assuntos
Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Receptores Adrenérgicos alfa 2/genética
20.
PLoS One ; 9(3): e91877, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622771

RESUMO

OBJECTIVE: Sustained ß-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the ß-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of ß-adrenoceptor overactivation. METHODS AND RESULTS: Mice lacking the ß1- or ß2-adrenoceptor subtype (ß1KO, ß2KO) and wild-type (WT) were treated with isoproterenol (ISO, 15 µg.g(-1) x day(-1), 7 days). ISO significantly enhanced the maximal vasoconstrictor response (Emax) of the aorta to phenylephrine in WT (+34%) and ß1KO mice (+35%) but not in ß2KO mice. The nitric oxide synthase (NOS) inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and ß1KO mice. Superoxide dismutase (SOD), pertussis toxin (PTx) or PD 98,059 (p-ERK 1/2 inhibitor) incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated ß2KO mice was not altered. Immunoblotting revealed increased aortic expression of Giα-3 protein (+50%) and phosphorylated ERK1/2 (+90%) and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100%) in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in ß2KO mice. CONCLUSIONS: The ß2-adrenoceptor/Giα signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term ß2-AR activation might results in endothelial dysfunction.


Assuntos
Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Isoproterenol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Fenilefrina/farmacologia , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/genética , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...